Fiche 3 : Constitution de la matière : des atomes aux ions (1) et aux composés ioniques

I Les constituants de l'atome

1) Rechercher les sens des mots ou expressions suivantes :

Particule élémentaire	
Numéro atomique (symbole ?)	
Nombre de masse (symbole ?)	
Mole	
Nombre d'Avogadro (définition, valeur, unité)	
Quantité de matière (en précisant son unité)	

2) Histoire : compléter le tableau suivant

particule	particule « découvreur »		Commentaire	
			Détermination de $\frac{e}{m_e}$	
			Détermination de <i>e</i>	
Noyau et proton				
	Chadwick			

3) Quelques données sur les particules élémentaires

Charge électrique élémentaire $e = 1,602 176 53(14) \times 10^{-19} C$

Particule	Charge électrique	Masse /kg
Proton	e	1,672 621 71(29) x 10 ⁻²⁷
Neutron	0	1,674 927 28(29) x 10 ⁻²⁷
Électron	-e	9,109 3826(16) x 10 ⁻³¹

A retenir :

$$\begin{split} m_{proton} \approx m_{neutron} \approx 2000 \text{ x } m_{\text{\'electron}} \quad (\textit{exactement} \text{ x } 1840) \\ Toute \ la \ masse \ est \ essentiellement \ concentr\'ee \ dans \ le \ noyau \\ donc \ m_{atome} \approx Z \quad m_{proton} + (A-Z) \ m_{neutron} \approx \ A \ x \ m_{nucl\'eon} \end{split}$$

Première S - Chimie

4) Nucléide

a) Symbole: ${}^{A}_{7}X$

Symbole	nom	définition
X		
Z		
A		

b) Questions

- Rappeler la définition des « *isotopes* » (étymologie du mot ?
- \triangleright Qu'appelle-t-on du « déutérium », de « l'eau lourde » ? (*Préciser dans chaque cas les symboles associés sous la forme* $\frac{A}{7}X$)
- Préciser la valeur de Z pour a) l'atome d'hydrogène b) l'ion H^+ $Z(H) = \dots Z(H^+) = \dots$
- \triangleright Ces deux nucléides ont-ils un symbole ${}_{7}^{A}X$ différents ?

5) Elément chimique

a) définition

Un élément chimique est constitué de l'ensemble des nucléides de même Z

b) Propriétés

Un élément chimique est caractérisé par son symbole

Exemples: hydrogène => H oxygène => O sodium => Na mercure =>Hg

- c) Questions
 - Dans la *classification périodique* (ou *classification de Mendeleev*) comment sont classés les éléments chimiques :
 - * D'une case à la suivante :
 - * D'une case à la suivante <u>avec changement de ligne</u>
 - * Où sont les éléments chimiques correspondant à 56 < Z < 71 et 88 < Z < 103?
 - Pourquoi la « classification de Mendeleev » est-elle également appelée « périodique » ? Préciser à quoi correspond une « période » ?
 - \triangleright L'azote a pour symbole N: pourquoi ? (aide : quelle est la traduction d'azote en anglais ?)

Rem : Vous êtes invités à vous intéresser à l'étymologie des noms des éléments chimiques et leur symbole

Voir : http://mendeleiev.cyberscol.qc.ca/carrefour/theorie/origine.html http://www.elementschimiques.fr/?fr

Ecole alsacienne –Première S

6) Atome

a) Définition

Un atome est un nucléide électriquement neutre (donc comportant autant de protons dans le noyau que d'électrons dans le nuage électronique)

- b) Questions
 - ➤ Quelle est l'étymologie du mot « atome » ?
 - ➤ Cette étymologie est-elle aujourd'hui légitime ? Pourquoi ?
 - Même question pour l'adjectif « élémentaire » dans « particule élémentaire » ? Par exemple, le proton, le neutron sont-ils des « particules élémentaires » ?
- c) Structure électronique dans l'atome :.

Rappeler les structures électroniques des atomes suivants :

Elément chimique	Symbole	Structure électronique
Hydrogène		
Hélium		
Lithium		
Beryllium		
Bore		
Carbone		
Azote		
Oxygène		
Fluor		
Neon		
Sodium		
Magnésium		
Aluminium		
Silicium		
Phosphore		
Soufre		
Chlore		
Argon		

Rem : Les règles de « remplissage de la structure électronique » des atomes apprises en classe de Seconde ne sont valides que pour les trois premières périodes de la classification : au-delà, il existe des règles plus élaborées qui sont enseignées dans l'enseignement supérieur.

Ecole alsacienne –Première S
Page 3

Première S - Chimie

- d) questions
- Rappeler le nom des familles d'éléments chimiques de la classification périodique et leur caractérisation :

Position	Nom	Caractérisation		
Première colonne		1 électron sur dernier niveau occupé		
Deuxième colonne				
Avant dernière colonne				
Dernière colonne				

propriétés chimiques :

Les éléments chimiques d'une même colonne (famille) ont des propriétés chimiques analogues : ceci constitue le deuxième argument de Mendeleev pour constituer sa classification.

Donner une interprétation de cette propriété.

Dans la classification périodique, il existe deux « périodes » isolée en bas de classification qui correspondent aux familles d'éléments chimiques appelés respectivement les *lanthanides* et les *actinides* : expliquer l'origine de ces deux appellations.

Voir <u>http://www.elementschimiques.fr/?fr/decouverte/classification-periodique</u> avec différentes représentations de la classification périodique dont l'une où ces deux familles sont à leur « **bonne** » place

II De l'atome à l'ion (mononucléaire)

- 1) Structure électronique d'un ion mononucléaire
- a) Méthode : on passe de la structure électronique d'un atome à l'ion correspondant par perte ou gain d'électrons du dernier niveau occupé (niveau de valence) de façon que la structure électronique de l'ion corresponde à celle du gaz rare le plus proche dans la classification périodique. Cette règle est encore appelée régle du duet ou de l'octet.

2) Exemples

Elément Z	Atome	ion	bilan	Gaz rare
F Z=9	K^2L^7	K^2L^8	gain 1électron ⇒ F	Ne (néon)
Na Z = 11	$K^2L^8M^1$	$K^2L^8M^0$	Perte 1électron ⇒ Na ⁺	Ne (néon)
Mg Z = 12	$K^2L^8M^2$	$K^2L^8M^0$	Perte 2électrons ⇒ Mg ²⁺	Ne (néon)
S Z = 16	$K^2L^8M^6$	$K^2L^8M^8$	gain 2électrons ⇒ S ²⁻	Ar (argon)

Ecole alsacienne –Première S Page 4

III Des ions aux composés ioniques

1) Composition

Un composé ionique simple est généralement formé d'un cation (ion positif) et d'un anion (ion négatif) de facon à former un composé électriquement neutre.

Parfois le composé peut être hydraté, ce qui signifie que des molécules d'eau sont insérées dans

CuSO_{4(s)} Ex : le sulfate du cuivre : anhydre de couleur blanche hydraté de couleur bleue

 $CuSO_4,5 H_2O_{(s)}$

2) Formule

a) principe

Dans la formule, les nombres de cations et d'anions doivent être ajustés de façon à conférer à l'édifice ionique la neutralité électrique

b) exemple

Le chlorure de magnésium est formé de : cation: ion magnésium Mg^{2+} anion: ion chlorure

La neutralité électrique impose deux ions chlorure pour un ion magnésium d'où la formule : MgCl₂

3) Nom et formule

A noter que le nom d'un composé ionique (à l'oral!) consiste à donner d'abord l'anion puis le cation Alors que pour *la formule*, *c'est l'inverse*: d'abord le cation puis l'anion

Exnom (di) chlorure de magnésium anion puis cation $MgCl_2$ cation puis anion formule

Explication : en anglais MgCl₂ ⇔ magnesium (di) chloride : même ordre pour formule et oral

Rem1: Ce composé existe également sous forme hydraté : sa formule est alors MgCl₂.6H₂O

Rem2 : la formule décrite ci-dessus est la formule « compacte » d'un composé ionique (les ions n'apparaissent pas explicitement) : elle correspond à la formule à l'état solide : en solution aqueuse, lorsque la solution n'est pas saturée, les ions sont dispersés, la formule compacte n'est alors pas pertinente.

4) Structure géométrique

a) Généralité

Un composé ionique à l'état solide a une structure géométrique très organisée qui constitue un un cristal. Ce cristal est la répétition dans les trois dimensions d'un même motif élémentaire appelé la maille du cristal.

b) le chlorure de sodium

Faire l'Activité n°2 : Les solides ioniques page 161 du livre (à joindre au cours!)

A consulter ::

Comment obtenir NaCl par une reaction chimique (sinon naturellement par sel marin!)

http://www.yteach.co.uk/index.php/resources/bond_charge_electrical_ion_ionic_electrovalent_covalent_multiple_coordin ate metalic t page 9.html

Structure géométrique de NaCl en 3D

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/01/06-Etat_solide/deug/nacl.html

http://www.yteach.co.uk/index.php/resources/bond_charge_electrical_ion_ionic_electrovalent_covalent_multiple_coordin ate_metalic_t_page_11.html

 $une\ autre\ structure\ proche: CsCl$

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/01/06-Etat_solide/deug/cscl.html

Ecole alsacienne –Première S Page 5