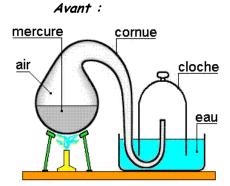
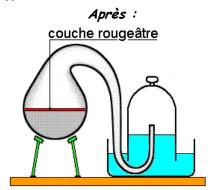
FICHE 9 : COMMENT SUIVRE L'ÉVOLUTION D'UN SYSTÈME CHIMIQUE ?

1. <u>Comment utiliser une recette de cuisine pour décrire une réaction chimique ?</u> Voir présentation PPT faite en classe...

Les élèves sont invités à recopier les encadrés **Étude de l'évolution d'un système chimique** p.91 et 92 du livre.¹


2. Comment appliquer cette recette à une expérience historique?


ACTIVITÉ

DOCUMENT 1 : L'EXPÉRIENCE DE LAVOISIER

En 1775, Lavoisier fît bouillir une masse m(Hg) = 122,00 g de mercure et un volume d'air contenant une masse $m(O_2)$ = 0,18 g de dioxygène.

Il obtint à la surface un solide rouge de masse m(HgO) = 2,38 g appelé oxyde de mercure (II). L'équation de la réaction chimique est : $2 Hg_{(l)} + O_{2 (g)} \rightarrow 2 HgO_{(s)}$.

-

¹ n°5 p.94

DOCUMENT 2 : UNE ANALYSE DE L'EXPÉRIENCE DE LAVOISIER

En chauffant du mercure (seul métal à l'état liquide à température ordinaire, et à relativement faible température d'ébullition à 350 °C), Lavoisier voit apparaître des flocules rouges d'oxyde de mercure. L'oxygène de l'air de la cornue a réagi avec le mercure pour former l'oxyde : il ne reste plus dans l'air de la cornue que l'azote. Lavoisier remarque que cette substance n'est pas respirable : un animal ne peut y vivre (azote = a - zoos -, privatif de vie). [...] Josette Fournier examine comment cette expérience est narrée par Lavoisier, plutôt à son avantage et au détriment de ses concurrents (l'Anglais Priestley et le Suédois Scheele, qui travaillaient eux aussi sur l'analyse de l'air). [...] Citons une anecdote amusante, entre autres. Lavoisier avait trouvé une proportion de 1/6 d'oxygène et 5/6 d'azote dans l'air - les proportions effectives étant en fait de l'ordre de 1/5 et 4/5. De nombreux auteurs de manuels font disparaître, ne serait-ce que pour des raisons pédagogiques, cette approximation erronée de Lavoisier : mais certains auteurs (1991) vont même jusqu'à indiquer que « l'expérience de Lavoisier a permis de donner la proportion « avec une bonne précision » !

 $\frac{http://www.bibnum.education.fr/scienceshumainesetsociales/histoire-de-l-enseignement/l-experience-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d-analyse-d$

DONNÉES :

Masse molaire en g/mol: M(Hg) = 200,6 M(O) = 16,0

Équation		2 Hg _(l)	+ O _{2 (q)} -	→ 2 HgO _(s)
État	Avancement /mol	Quantités de matière /mol		
État initial	x = 0	n ₁	n ₂	0
État intermédiaire	×			
État final	× _{max}			$n_f = 2 x_{max}$

Travail à effectuer

- Q1. Calculer les quantités de matières n_1 et n_2 .
- Q2. Justifier que $x_{max} = 5.6 \times 10^{-3}$ mol.
- Q3. En déduire n_f et la masse m_f d'oxyde de mercure formée.
- Q4. Comparer m_f avec la masse mesurée par Lavoisier.