Echange d'énergie à l'échelle microscopique

A l'échelle microscopique, l'échange d'énergie d'un système avec l'extérieur peut se traduire par :

- Une variation de température (pas de modification des entités élémentaires, pas de changement d'état physique)

- Un changement d'état physique (pas de modification des entités élémentaires, température inchangée)

- Une transformation chimique (modification des entités élémentaires)

Variation de température

Soit un système constitué d'un matériau unique de masse m passant de la température $\, heta_i\,$ à $\, heta_f$

$$Q = m \cdot C (\theta_f - \theta_i)$$
 (C: capacité thermique massique du matériau en J.kg⁻¹.K⁻¹))

$$\begin{cases} \theta_f > \theta_i \text{ \'echauffement} & Q > 0 \\ \theta_f < \theta_i \text{ refroidissement} & Q < 0 \end{cases} \quad \text{avec} \quad \begin{cases} \textit{Q} > \textit{0\'energie reçue} \\ \textit{Q} < \textit{0\'energie lib\'er\'ee} \end{cases} \dots \text{ par le syst\`eme}$$

Remarque: $\Delta\theta$ en °C = ΔT en K puisque $T = \theta + 273$

Substance	<u>Phase</u>	Capacité thermique massique / J.kg ⁻¹ .K ⁻¹
Air (sec)	gaz	1005
Air (saturé en vapeur d'eau)	gaz	≈ 1030
Aluminium	solide	897
Azote	gaz	1042
Cuivre	solide	385
<u>Diamant</u>	solide	502
	gaz	1850
<u>Eau</u>	liquide	4186
	solide (0 °C)	2060
Éthanol	liquide	2460
<u>Fer</u>	solide	444
<u>Graphite</u>	solide	720
<u>Hélium</u>	gaz	5190
<u>Hexane</u>	liquide	≈ 2267.95
<u>Huile</u>	liquide	≈ 2000
<u>Hydrogène</u>	gaz	14300
Laiton	solide	377
<u>Lithium</u>	solide	3582
<u>Mercure</u>	liquide	139
<u>Octane</u>	liquide	≈ 1393.33
<u>Or</u>	solide	129
<u>Oxygène</u>	gaz	920
Zinc	solide	380

À pression constante,	(sauf indication contraire)
dans les conditions normale	es de température et de pression

substance	\boldsymbol{C}	substance	\boldsymbol{C}
asphalte	920	gypse	1090
brique	840	marbre	880
béton	880	sable	835
granit	790	bois	420

Changement d'état

Soit un système constitué d'un matériau unique de masse m passant d'un état physique à un autre

Q=m . L (L : chaleur latente de changement d'état à θ donnée en J .kg $^{\text{-1}}$.))

Remarque : solide \longrightarrow liquide \longrightarrow gaz L>0 et Q>0 : apport d'énergie nécessaire

donc $gaz \longrightarrow liquide \longrightarrow solide$ Q < 0

Corps simples	chaleur latente de			
	fusion kJ/kg	vaporisation kJ/kg	Autres fusion substances kJ/kg	
Aluminium	393	No/Ng	Azote	3219
Antimoine	163	1340	Méthane	510
Argent	103	2160	Éthane	489
Béryllium	1339		Propane	426
Bismuth	43	858	Butane	385
Cadmium	45	1004	n-Pentane	357
Calcium		2430	Isopentane	339
Césium	16		n-Hexane	337
Chrome	316		<u>n-Heptane</u>	320
Cobalt	259		n-Octane	306
Cuivre	205	4650	<u>Éthylène</u>	483
<u>Étain</u>	59	2600	Propylène	438
<u>Fer</u>	207		But-1-ène	391
<u>Lithium</u>	137		<u>Isobutène</u>	394
<u>Magnésium</u>	369	8450	Cyclopentane	390
<u>Manganèse</u>	101		Cyclohexane	358
<u>Nickel</u>	298		<u>Acétylène</u>	829
<u>Palladium</u>	152		<u>Benzène</u>	394
Phosphore blanc	21	540	<u>Toluène</u>	363
<u>Platine</u>	114		<u>o-Xylène</u>	347
<u>Plomb</u>	23	920	<u>Cumène</u>	312
Soufre clinorhombique	39		<u>Méthanol</u>	1100
<u>Zinc</u>	96	1820	<u>Éthanol</u>	855
	sublimatio		<u>Propanol</u>	695
Carbone	-712		<u>Isopropanol</u>	667
diiode	-62,4		<u>n-Butanol</u>	591
			<u>Acétaldéhyde</u>	570
			<u>Acétone</u>	521
			<u>Silane</u>	342
			<u>Diéthyléther</u>	377
			Essence automobile	335
				330 2256
			<u>Ammoniac</u>	1391

Chaleur de réaction chimique

Peut-être estimée à partir des énergies de liaisons chimiques

Energie de liaison

Définition : rappel état gazeux et définition (par mol!)

$$(X-Y)_{g} \; \longmapsto (X)_{g} \; + (Y)_{g} \qquad \qquad E_{d} \; (\textit{d:dissociation !}) > 0 \quad E_{liaison} = - \; E_{d} \; < 0$$

Quelques valeurs

liaison simple

liaison	D (kJ/mol)	d(nm)	liaison	D (kJ/mol)	d(nm)	liaison	D (kJ/mol)	d(nm)
Н-Н	432	0,0742	C-F	485	0,135	S-S	266	0,205
H-F	565	0,0918	C-Cl	328	0,177	S-F	284	0,156
H-Cl	428	0,1274	C-Br	285	0,194	S-Cl	200	0,207
H-I	295	0,1608	C-I	213	0,214	S-I	150	
Н-О	459	0,096	C-N	305	0,147	F-F	155	0,1418
H-N	390	0,101	N-F	270	0,136	Cl-Cl	240	0,1626
H-S	365	0,134	N-Cl	313	0,175	Br-Br	190	0,2284
H-Se	276	0,146	N-O	201	0,140	I-I	149	0,2666
H-P	322	0,144	N-N	160	0,145	Mg-Cl	406	0,218
Н-С	415	0,109	O-O	143	0,147	Mg-Br	340	0,234
C-C	345	0,154	O-F	190	0,142	Mg-I	264	0,254

liaison multiple

liaison	D (kJ/mol)	d(nm)	liaison	D (kJ/mol)	d(nm)	liaison	D (kJ/mol)	d(nm)
C=C	602	0,134	C=O	799	0,120	O=O	494	0,1207
$\mathbb{C}\square\square\mathbb{C}$		0,140	C=N	615		N=N	418	0,125
(benzène)								
C≡C	835	0,120	$C\square N$	887	0,116	N≡N	942	0,1098

Exemple d'application : combustion complète de l'éthane

$$CH_4(g) \ + \ O_2\left(g\right) \ \longmapsto \ CO_2(g) + \ 2 \ H_2O\left(g\right)$$

liaisons cassées
$$\begin{cases} 4 \ C-H \\ 2 \ O=O \end{cases}$$
 liaisons formées $\begin{cases} 4 \ C-H \\ 2 \ C=O \end{cases}$

$$C(g) + 4 H(g) + 4 O(g)$$

$$Q = 4 E_{d} (C-H) + 2 E_{d} (O=O) - 4 E_{d} (O-H) - 2 E_{d} (C=O)$$

$$4 \times 415 + 2 \times 496 - 4 \times 459 - 2 \times 799 = -782 \text{ kJ.mol}^{-1}$$

Remarque : ici, toutes les espèces sont à l'état gazeux!

Si ce n'est pas le cas, il faut tenir compte des changements d'état et faire intervenir les chaleurs latentes correspondantes.

Exercice chercher Q pour : $CH_4(g) + O_2(g) \longrightarrow C(s) + 2 H_2O(l)$ (combustion incomplète)