Nom : Coéquipier :

CONSERVATION ? PAS CONSERVATION ?... de la quantité de mouvement

Partie II : NON CONSERVATION DE LA QUANTITE DE MOUVEMENT

A. Etude de la chute libre

1) Etude expérimentale : saisie et traitement d'une séquence vidéo

Rem : cette partie du TP ne sera pas faite, mais les conditions de l'enregistrement d'une video puis de son traitement sont rappelées afin de préparer les TP suivants

Le mouvement d'une boule est filmé avec une Webcam fixe dans le référentiel terrestre. Positionner la Webcam parallèlement au plan de la trajectoire de la boule, il faut que les bords de l'image soient parfaitement verticaux ou horizontaux.

Choisir une fréquence image de 25 ou 30 images par seconde.

Effectuer la mise au point avec soin.

Prévoir d'enregistrer sur la vidéo une échelle de longueur (règle graduée verticale ou 2 repères distants de 50,0 cm) et un point O, lié à la Terre (si possible en bas et à gauche du champ) qui servira d'origine du repère.

Effectuer l'enregistrement du mouvement parabolique (une durée d'enregistrement de 1 s est suffisante).

Vérifier après chaque enregistrement qu'aucune image n'est perdue.

Enregistrer le fichier avec l'extension .avi

Démarrer le logiciel de traitement (Synchronie 6), puis charger le fichier vidéo.

Préparer l'exploitation du fichier en configurant l'échelle et en choisissant l'origine des axes

Les positions de la boule sont repérées dans le repère choisi. (fichier video Parab6 avec 30 images/s)

Fig. 1

Terminale S

2) Vecteur vitesse : variation (les réponses aux questions posées seront écrites sur la feuille réponse)

Dans le menu *Fichier* => *Ouvrir*, charger le fichier *parab6 Rem : Pour éviter de modifier ce fichier, faire immédiatement Enregistrer sous*...;

Et donner comme nouveau nom du fichier parab6VOTRENOM

Soit le résultat du pointage ((Doc 1 en annexe du TP) Dans ce document résultant du pointage, les deux échelles pour Xi et Yi sont-elles identiques. Préciser sur la feuille réponse les échelles pour Xi et Yi.

En utilisant le menu Vecteurs, afficher les vecteurs-vitesse pour les différentes positions de la boule (voir méthode ci-contre)

Noter sur la feuille réponses les valeurs pour les points M_3 , M_6 , M_9 , M_{12} de :

 $\begin{array}{cccc} V_x & V_y & \mbox{et } V \\ \mbox{Quelle est la relation entre } V_x & V_y & \mbox{et } V \mbox{? Noter votre réponse sur la feuille réponse} \end{array}$

Dans Excel, ouvrir le fichier Parab6_excel_dep

Rem : Pour éviter de modifier ce fichier, faire immédiatement **Enregistrer** *sous ... ; Et donner comme nouveau nom du fichier parab6_excel_VOTRENOM*

- A partir des valeurs de Xi et Yi résultat du pointage et copiées dans le fichier Excel, calculer Vx, Vy et V (remplir les cases en grisé du fichier)
- Indiquer sur la feuille réponse les formules de calcul par exemple pour le point M₃
- > Noter sur la feuille réponses les valeurs pour les points M_3 , \dot{M}_6 , \dot{M}_9 , M_{12} de : \dot{V}_x V_y et V

Tracé des vecteurs vitesse avec Synchronie : voir le document obtenu (Doc 2 en annexe du TP)

- Dans ce document, les deux échelles pour Xi et Yi sont-elles identiques. Préciser sur la feuille réponse les échelles pour Xi et Yi.
- > Déterminer l'échelle du document (*Doc 2*) pour la représentation des vecteurs vitesse
- Reproduire avec soin tous les vecteurs-vitesse à partir d'un même point quelconque du document (*Doc 2 en annexe*)
- En appelant x'x, l'axe horizontal, que peut on dire de la projection V_x de chaque vecteur vitesse. sur le document 2. Vérifier l'observation dans Synchronie ; Interprétation de la propriété de V_x mise en évidence.?

Variation du vecteur vitesse $\Delta \vec{V}$

On appelle vecteur variation de la vitesse entre deux instants : $\Delta \overrightarrow{V_i} = \overrightarrow{V_{i+1}} - \overrightarrow{V_{i-1}}$ (Ex : $\Delta \overrightarrow{V_3} = \overrightarrow{V_4} - \overrightarrow{V_2}$)

- > Tracer tous les vecteurs $\Delta \vec{V}$
- Comparer la direction, le sens et la norme de ces vecteurs. L'observation est-elle cohérente avec l'observation faite sur V_x ?

C- Conclusions

Quelle est la force appliquée à la boule pendant son mouvement ? Préciser ses caractéristiques (direction, sens, norme)

Comparer la direction et le sens de cette force à celles des vecteurs $\Delta \vec{V}$.

Que mesure (à un facteur multiplicatif près que l'on précisera !) le vecteur $\Delta \vec{V}$?

Conclure sur la relation entre $\Delta \vec{V}$ et la force appliquée à la boule pendant son mouvement.

SYNCHRONIE 6 Charger Fichier *Menu* Fichier => ouvrir Affichage des vecteurs - Menu Traitements => *Autres traitements => Vecteurs* - Renseigner la fenêtre *variable* en sélectionnant Yi et Xi pour le déplacement vertical et le déplacement horizontal. *Temps* : par variable - choisir Timage (vérifier 33 ms) - Dans les options Affichage, onglet *Représentation des* vecteurs, cocher Vecteurs vitesse. (décocher Vecteurs accélération) En glissant sur chaque point avec la souris, on affiche les vecteurs vitesse et en cliquant sur un point l'affichage devient permanent. La valeur de la vitesse est affichée dans la fenêtre de droite.

B. Etude d'un mobile autoporteur accroché à un ressort

- 1) Etude expérimentale :
- a) saisie et traitement d'une séquence vidéo

Rem : cette partie du TP ne sera pas faite, mais les conditions de l'enregistrement d'une video puis de son traitement sont rappelées afin de préparer les TP suivants

- > On enregistre à l'aide d'une webcam le mouvement de la projection du centre d'inertie G d'un mobile autoporteur S de masse m = 731 g, lié par un ressort de constante de raideur k = 5,2 N/m à un point fixe O de la table horizontale.
- Prévoir d'enregistrer une échelle de longueur pour étalonner les images vidéo.

La durée entre deux positions du centre d'inertie est $\Delta t = 0,100 \text{ s}$. (soit 10 images par seconde !) Lorsque le ressort n'est pas tendu, la distance du point d'attache O du ressort au centre d'inertie I du mobile

est : $L_0 = 17.6$ cm.

Terminale S

Dans le menu *Fichier => Ouvrir*, charger le fichier *Force_13 (ou Force_18) Rem : Pour éviter de modifier ce fichier, faire immédiatement Enregistrer sous ... ; Et donner comme nouveau nom du fichier Force_xxVOTRENOM*

- *b*) Les différentes positions du mobile sont enregistrées sur un papier spécial directement placé sur la table horizontale portant le mobile autoporteur
 - => Soit la photocopie à l'échelle 1 de ce document papier : Doc 3

2) Tracé des vecteurs vitesse et des vecteurs accélération sur le <u>document papier joint : Doc 3</u>

a) Vecteurs vitesse

On assimile la vitesse instantanée du centre d'inertie I au point i à la vitesse moyenne entre les points i-1 et i+1 :

$$\mathbf{v}_i = \frac{d(I_{i-1}, I_{i+1})}{2\Lambda t}$$

Certains vecteurs ont été tracés sur le document joint.

Utiliser le document pour :

- déterminer la vitesse de I aux points 4, 5 et 6.
- tracer les vecteurs vitesses aux mêmes points (utiliser l'échelle de représentation indiquée).

b) vecteurs-variation de la vitesse

> Pour les positions 3 et 4, tracer les vecteurs variation de la vitesse définis par : $\Delta \vec{V_i} = \vec{V_{i+1}} - \vec{V_{i-1}}$ Utiliser l'échelle indiquée sur le document pour la représentation des vecteurs vitesse

- > Comment sont orientés les vecteurs $\Delta \vec{V_3}$ et $\Delta \vec{V_4}$? (Noter la réponse sur la feuille réponse)
- Mesurer les normes de chacun de ces vecteurs et noter les valeurs sur la feuille réponse
- > Pour les mêmes positions, <u>calculer</u> l'accélération à partir de la norme du vecteur-variation de la vitesse :

$$\|\vec{a}_i\| = \frac{\|\overrightarrow{\Delta v}_i\|}{2\Delta t}$$
 et noter les valeurs sur la feuille réponse.

Webcam Durée du clip : 2 s ou 3 s Durée entre 2 images : 0,1 s Choisir un nom de fichier Réserver un espace mémoire de 10 à 15 Mo.

Terminale S

- 3) Représentation graphique des vecteurs vitesse et accélération du centre d'inertie (<u>étude avec</u> Synchronie)
- Le logiciel Synchronie permet l'affichage des vecteurs vitesse et accélération.

Ouvrir un fichier résultant du pointage : $Force_x x$ (xx = 13 ou 18)

Procéder à l'affichage de ces vecteurs en cliquant sur chacun des points.

- > Comment sont orientés les vecteurs accélération ?
- > Est-ce conforme à l'orientation des vecteurs $\Delta \vec{V_3}$ et $\Delta \vec{V_4}$?
- 4) Exploitation numérique
- Démarrer le logiciel Excel et charger le fichier Force_excel_dep (il y a deux feuilles correspondant à Force_13 ou et Force_18)

Les coordonnées x et y des positions du centre d'inertie du mobile autoporteur ont été recopiées dans une feuille de calcul du logiciel Excel.

Ouvrir la feuille de calcul correspondant au document étudié précédemment.

a) Calcul des vitesses et accélérations

Faire calculer par le logiciel les coordonnées v_x et v_y des vecteurs vitesse pour le plus grand nombre de positions possibles. On utilisera le même type d'expression que précédemment : la coordonnée v_{xi} est assimilée à la vitesse moyenne entre les positions i-1 et i+1.

$$\mathbf{v}_{xi} = \frac{x_{i+1} - x_{i-1}}{2\Delta t}$$
 et $\mathbf{v}_{yi} = \frac{y_{i+1} - y_{i-1}}{2\Delta t}$

 \triangleright Calculer les coordonnées a_x et a_y de l'accélération du centre d'inertie pour le plus grand nombre de positions possibles. L'expression utilisée sera du même type que celle utilisée pour les calculs de vitesse.

Indiquer les expressions littérales de a_x et a_y.

Calculer la norme a de l'accélération du centre d'inertie pour les mêmes positions que précédemment.

Comparer les valeurs indiquées dans la feuille de calcul à celles déterminées « manuellement » sur Doc 3 Comment expliquez-vous les différences éventuelles ?

b) Calcul de l'allongement $(L - L_0)$ du ressort

- En utilisant les coordonnées x et y de chaque position du centre d'inertie calculer la distance L du centre d'inertie I du mobile au point d'attache fixe du ressort. Indiquer l'expression littérale utilisée.
- Calculer L $L_0 = \Delta L$, l'allongement du ressort, puis T = k. ΔL , la norme de la tension du ressort

5) Tracé du graphique (« nuage de points ») de T en fonction de l'accélération.

- En utilisant les ressources graphiques du logiciel Excel, tracer le graphique (« nuage de points ») représentant T, la tension du ressort en fonction de l'accélération du centre d'inertie.
- $\blacktriangleright \quad Que vaut a quand T = 0 ?$
- Ajouter une courbe de tendance et demander son équation.

Noter la pente obtenue et la comparer à la valeur de m.

En déduire une relation entre la force exercée par le ressort sur le mobile et l'accélération de son centre d'inertie I.

6) Conclusions

En utilisant l'analyse des forces effectuée dans l'étude préalable et les résultats des différentes parties de l'exploitation, montrez que cette étude est une illustration de la 2^{eme} loi de Newton.

Synchronie Affichage des vecteurs - Menu Traitements => Autres traitements => Vecteurs - Renseigner la fenêtre variable en sélectionnant Y et X pour le déplacement vertical et le déplacement horizontal. Temps : par variable - choisir Timage (vérifier 0,1s) - Dans les options Affichage, onglet Représentation des vecteurs, cocher Vecteurs vitesse. (décocher Vecteurs accélération) Terminale S

Nom :

Coéquipier :

Document à rendre avec le compte rendu pour les constructions

Yi(Xi)							
			••••	·····		30 images/s <=> Dt = 33	,33 ms
i I		•	·	•			
- I I				•			
l l		•			•		
1							
					•		
 	•						
						•	
i I							
<u>u</u>							
1						•	
l l							
l I							
1							
1							
1 r					·····		
l l							Xi (m)
0	+0.05	+0.10	+0.15	+0.20	+0.25	+0.30	+0.35

Annexe Doc 1 : Copie d'écran du pointage

(les valeurs de Xi, Yi sont les valeurs « vraies » compte tenu du pointage et de la prise en compte de l'étalonnage d'échelle)

Terminale S

Annexe

Faire la construction de tous les vecteurs vitesse (Faire les tracés avec le maximum de soin ! – comment tracer deux droites parallèles avec une règle et une équerre ? -) Avec ce point comme origine

Nom :

CONSERVATION ? PAS CONSERVATION ?... de la quantité de mouvement

Partie II : NON CONSERVATION DE LA QUANTITE DE MOUVEMENT

Feuille réponse

A. Chute libre

Document résultant du pointage (Doc1)

Echelle	pour Xi	1 cm sur le document correspond à		
	pour Yi	1 cm sur le document correspond à		

Etude du vecteur vitesse avec Synchronie

Point n•	$V_x / m.s^{-1}$	$V_{y} / m.s^{-1}$	$V/m.s^{-1}$
3			
6			
9			
12			

Relation entre V_x V_y et V?

V =

Etude du vecteur vitesse avec Excel : formules de calcul

 $En M_3$

V_{x3 =}.....

V_{y3 =}

V_{3 =}.....

Etude du vecteur vitesse avec Excel

Point n•	$V_x/m.s^{-1}$	$V_y/m.s^{-1}$	$V/m.s^{-1}$
3			
6			
9			
12			

Retrouvez vous les valeurs obtenues avec Synchronie (ci-dessus) :

Document Tracé des vecteurs vitess	se (Doc2)	
Echelle	pour Xi	1 cm sur le document correspond à
	pour Yi	1 cm sur le document correspond à
	pour \vec{V}	1 cm sur le document correspond à
Propriétés des V_x des vecteurs vitesse ?		
Interprétation ? :		

Conclusions (rédigez vos conclusions sur force appliquée, $\Delta \overrightarrow{V}$, etc.)

B. Mobile autoporteur accroché à un ressort

- 1) Etude du document papier
 - a) Vecteurs vitesse fournir le document avec les constructions
 - b) vecteurs-variation de la vitesse

$\left \varDelta \overrightarrow{V_3} \right = \varDelta V_3 =$		$\left \Delta \overrightarrow{V_4} \right = \Delta V_4 =$		
$a_3 =$		$a_4 =$		
2) Etude avec Synch	ronie puis Excel			
Comment sont orientés les vec	teurs accélération? Est-ce conf	forme à l'orientat	tion des vecteurs $\Delta \vec{V_3}$	et $\Delta \overrightarrow{V_4}$?
		· · · · · · · · · · · · · · · · · · ·		
Fournir avec le compte rendu	le tableau des données mesurées	s et/ou calculée e	et les graphes faits	
Expressions littérales de $a_x =$		$a_y =$		
L =				

Conclusions (rédigez vos conclusions sur force appliquée, $\Delta \vec{V}$, etc.)