		1	
101	rmina	110	. \

Nom:	Coéquipier:
1 10111	Cocquipici

COMMENT DÉTERMINER LA CONSTANTE D'ACIDITÉ D'UN COUPLE ACIDO-BASIQUE PAR pHMÉTRIE ?

OBJECTIF

On se propose d'étudier soit le couple acide éthanoïque - éthanoate noté HA/A.

PROTOCOLE

On dispose de 2 solutions de même concentration (c = 0,100 mol.L⁻¹) d'acide éthanoïque et d'éthanoate de sodium.

<u>1ère partie</u>

- \triangleright Dans un bécher placer $v_a = 20,0$ mL d'acide.
- Remplir la burette d'éthanoate de sodium.
- Introduire les électrodes du pH-mètre étalonné dans le bécher.
- Ajouter un volume v_b d'éthanoate de sodium dans l'acide, agiter et mesurer le pH. Opérer de 2,0 en 2,0 mL de 2,0 mL à 20,0 mL.

V _b	2,0	4,0	6,0	8,0	10,0	12,0	14,0	16,0	18,0	20,0
рН										
$\frac{[A^-]}{[HA]} = \frac{v_b}{v_a}$										
log[A-]										

2ème partie

- \triangleright Dans un becher placer $v_b = 20.0$ mL de d'éthanoate de sodium.
- Remplir la burette d'acide.
- Introduire les électrodes du pH-mètre étalonné dans le bécher.
- Ajouter un volume v_a d'acide éthanoïque dans l'éthanoate de sodium, agiter et mesurer le pH. Opérer de 2,0 en 2,0 mL de 2,0 mL à 20,0 mL.

Va	2,0	4,0	6,0	8,0	10,0	12,0	14,0	16,0	18,0	20,0
рН										
$\frac{[A^-]}{[HA]} = \frac{v_b}{v_a}$										
log[A-] [HA]										

EXPLOITATION

1. Questions préalables

a) Quelles sont les espèces chimiques présentes dans le mélange acide-base conjugué ?

Terminale S

b) En considérant les équations de conservation et de neutralité de la solution, montrer que l'on a les relations :

$$\begin{cases} n(A_{aq}^{-}) = C_B.V_B + n (H_3O^{+}) - n(HO^{-}) \\ n(HA_{aq}) = C_A.V_A - n (H_3O^{+}) + n(HO^{-}) \end{cases}$$

.

c) Justifier que dans le domaine de pH étudié, on a la relation : $\frac{[A^-]}{[HA]} = \frac{v_b}{v_a}$ lorsque $c_b = c_a$

Pour chaque mesure dans les deux parties de l'expérience, calculer le rapport $\frac{v_b}{v_a}$. Indiquer les résultats dans les tableaux précédents.

3. Tracé de la courbe $pH = f(log \frac{[A^*]}{[HA]})$ sur la page 3 et sur votre calculatrice

En abscisses, graduer l'axe de -1 à +1 ; En ordonnées, graduer l'axe pH tel que 1 cm = 1 unité pH. Pour le compte rendu, faire le graphe sur Excel avec régression linéaire

- 4. Exploitation du graphe et conclusion
- a) Quelle est la nature de la fonction $pH = f(log \frac{[A^-]}{[HA]})$?
- b) Calculer la pente. La valeur de la pente obtenue est-elle conforme à la théorie ? Discuter.
- c) Quelle est l'ordonnée à l'origine appelée p K_a ? On définit $K_a=10^{\text{-}p}K_a$. Calculer K_a
- d) Ecrire l'équation de la fonction tracée.

5. Amélioration possible:

Soit les formules sans approximation :

$$[HA_{aq}] = \frac{C_A \cdot V_A}{V_A + V_B} - [H_3O^+] + [HO^-] \text{ et } [A_{aq}] = \frac{C_B \cdot V_B}{V_A + V_B} + [H_3O^+] - [HO^-] \text{ avec } [HO^-] = \frac{Ke}{[H_3O^+]}$$

Tracé (sur Excel) de la courbe $pH = f(log \frac{[A^-]}{[HA]})$ sans approximation (Juxtaposer les graphes avec et sans approximation)

L'exploitation du graphe donne-t-elle des résultats différents de ceux obtenus avec le graphe avec approximation.

Nom:	Coéquipier:

Terminale S